Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLOS global public health ; 2(7), 2022.
Article in English | EuropePMC | ID: covidwho-2251361

ABSTRACT

Early and accurate diagnosis of respiratory pathogens and associated outbreaks can allow for the control of spread, epidemiological modeling, targeted treatment, and decision making–as is evident with the current COVID-19 pandemic. Many respiratory infections share common symptoms, making them difficult to diagnose using only syndromic presentation. Yet, with delays in getting reference laboratory tests and limited availability and poor sensitivity of point-of-care tests, syndromic diagnosis is the most-relied upon method in clinical practice today. Here, we examine the variability in diagnostic identification of respiratory infections during the annual infection cycle in northern New Mexico, by comparing syndromic diagnostics with polymerase chain reaction (PCR) and sequencing-based methods, with the goal of assessing gaps in our current ability to identify respiratory pathogens. Of 97 individuals that presented with symptoms of respiratory infection, only 23 were positive for at least one RNA virus, as confirmed by sequencing. Whereas influenza virus (n = 7) was expected during this infection cycle, we also observed coronavirus (n = 7), respiratory syncytial virus (n = 8), parainfluenza virus (n = 4), and human metapneumovirus (n = 1) in individuals with respiratory infection symptoms. Four patients were coinfected with two viruses. In 21 individuals that tested positive using PCR, RNA sequencing completely matched in only 12 (57%) of these individuals. Few individuals (37.1%) were diagnosed to have an upper respiratory tract infection or viral syndrome by syndromic diagnostics, and the type of virus could only be distinguished in one patient. Thus, current syndromic diagnostic approaches fail to accurately identify respiratory pathogens associated with infection and are not suited to capture emerging threats in an accurate fashion. We conclude there is a critical and urgent need for layered agnostic diagnostics to track known and unknown pathogens at the point of care to control future outbreaks.

2.
Front Public Health ; 11: 1018293, 2023.
Article in English | MEDLINE | ID: covidwho-2246573

ABSTRACT

Climate change impacts global ecosystems at the interface of infectious disease agents and hosts and vectors for animals, humans, and plants. The climate is changing, and the impacts are complex, with multifaceted effects. In addition to connecting climate change and infectious diseases, we aim to draw attention to the challenges of working across multiple disciplines. Doing this requires concentrated efforts in a variety of areas to advance the technological state of the art and at the same time implement ideas and explain to the everyday citizen what is happening. The world's experience with COVID-19 has revealed many gaps in our past approaches to anticipating emerging infectious diseases. Most approaches to predicting outbreaks and identifying emerging microbes of major consequence have been with those causing high morbidity and mortality in humans and animals. These lagging indicators offer limited ability to prevent disease spillover and amplifications in new hosts. Leading indicators and novel approaches are more valuable and now feasible, with multidisciplinary approaches also within our grasp to provide links to disease predictions through holistic monitoring of micro and macro ecological changes. In this commentary, we describe niches for climate change and infectious diseases as well as overarching themes for the important role of collaborative team science, predictive analytics, and biosecurity. With a multidisciplinary cooperative "all call," we can enhance our ability to engage and resolve current and emerging problems.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Communicable Diseases , Humans , Animals , Ecosystem , Climate Change , COVID-19/epidemiology , Communicable Diseases/epidemiology , Communicable Diseases, Emerging/epidemiology
3.
Frontiers in public health ; 11, 2023.
Article in English | EuropePMC | ID: covidwho-2237289

ABSTRACT

Climate change impacts global ecosystems at the interface of infectious disease agents and hosts and vectors for animals, humans, and plants. The climate is changing, and the impacts are complex, with multifaceted effects. In addition to connecting climate change and infectious diseases, we aim to draw attention to the challenges of working across multiple disciplines. Doing this requires concentrated efforts in a variety of areas to advance the technological state of the art and at the same time implement ideas and explain to the everyday citizen what is happening. The world's experience with COVID-19 has revealed many gaps in our past approaches to anticipating emerging infectious diseases. Most approaches to predicting outbreaks and identifying emerging microbes of major consequence have been with those causing high morbidity and mortality in humans and animals. These lagging indicators offer limited ability to prevent disease spillover and amplifications in new hosts. Leading indicators and novel approaches are more valuable and now feasible, with multidisciplinary approaches also within our grasp to provide links to disease predictions through holistic monitoring of micro and macro ecological changes. In this commentary, we describe niches for climate change and infectious diseases as well as overarching themes for the important role of collaborative team science, predictive analytics, and biosecurity. With a multidisciplinary cooperative "all call,” we can enhance our ability to engage and resolve current and emerging problems.

4.
Mol Aspects Med ; : 101142, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2232525

ABSTRACT

Topics expected to influence personalized medicine (PM), where medical decisions, practices, and treatments are tailored to the individual patient, are reviewed. Lack of discrimination due to different biological conditions that express similar values of numerical variables (ambiguity) is regarded to be a major potential barrier for PM. This material explores possible causes and sources of ambiguity and offers suggestions for mitigating the impacts of uncertainties. Three causes of ambiguity are identified: (1) delayed adoption of innovations, (2) inadequate emphases, and (3) inadequate processes used when new medical practices are developed and validated. One example of the first problem is the relative lack of medical research on "compositional data" -the type that characterizes leukocyte data. This omission results in erroneous use of data abundantly utilized in medicine, such as the blood cell differential. Emphasis on data output ‒not biomedical interpretation that facilitates the use of clinical data‒ exemplifies the second type of problems. Reliance on tools generated in other fields (but not validated within biomedical contexts) describes the last limitation. Because reductionism is associated with these problems, non-reductionist alternatives are reviewed as potential remedies. Data structuring (converting data into information) is considered a key element that may promote PM. To illustrate a process that includes data-information-knowledge and decision-making, previously published data on COVID-19 are utilized. It is suggested that ambiguity may be prevented or ameliorated. Provided that validations are grounded on biomedical knowledge, approaches that describe certain criteria - such as non-overlapping data intervals of patients that experience different outcomes, immunologically interpretable data, and distinct graphic patterns - can inform, at personalized bases, earlier and/or with fewer observations.

5.
PLOS Glob Public Health ; 2(7): e0000811, 2022.
Article in English | MEDLINE | ID: covidwho-2021498

ABSTRACT

Early and accurate diagnosis of respiratory pathogens and associated outbreaks can allow for the control of spread, epidemiological modeling, targeted treatment, and decision making-as is evident with the current COVID-19 pandemic. Many respiratory infections share common symptoms, making them difficult to diagnose using only syndromic presentation. Yet, with delays in getting reference laboratory tests and limited availability and poor sensitivity of point-of-care tests, syndromic diagnosis is the most-relied upon method in clinical practice today. Here, we examine the variability in diagnostic identification of respiratory infections during the annual infection cycle in northern New Mexico, by comparing syndromic diagnostics with polymerase chain reaction (PCR) and sequencing-based methods, with the goal of assessing gaps in our current ability to identify respiratory pathogens. Of 97 individuals that presented with symptoms of respiratory infection, only 23 were positive for at least one RNA virus, as confirmed by sequencing. Whereas influenza virus (n = 7) was expected during this infection cycle, we also observed coronavirus (n = 7), respiratory syncytial virus (n = 8), parainfluenza virus (n = 4), and human metapneumovirus (n = 1) in individuals with respiratory infection symptoms. Four patients were coinfected with two viruses. In 21 individuals that tested positive using PCR, RNA sequencing completely matched in only 12 (57%) of these individuals. Few individuals (37.1%) were diagnosed to have an upper respiratory tract infection or viral syndrome by syndromic diagnostics, and the type of virus could only be distinguished in one patient. Thus, current syndromic diagnostic approaches fail to accurately identify respiratory pathogens associated with infection and are not suited to capture emerging threats in an accurate fashion. We conclude there is a critical and urgent need for layered agnostic diagnostics to track known and unknown pathogens at the point of care to control future outbreaks.

6.
Front Public Health ; 9: 817431, 2021.
Article in English | MEDLINE | ID: covidwho-1686578

ABSTRACT

As the world looks forward to turning a corner in the face of the COVID-19 pandemic, it becomes increasingly evident that international research cooperation and dialogue is necessary to end this global catastrophe. Last year, we initiated a research topic: "Infectious Disease Surveillance: Cooperative Research in Response to Recent Outbreaks, Including COVID-19," which aimed at featuring manuscripts focused on the essential link between surveillance and cooperative research for emerging and endemic diseases, and highlighting scientific partnerships in countries under-represented in the scientific literature. Here we recognize the body of work published from our manuscript call that resulted in over 50 published papers. This current analysis describes articles and authors from a variety of funded and unfunded international sources. The work exemplifies successful research and publications which are frequently cooperative, and may serve as a basis to model further global scientific engagements.


Subject(s)
COVID-19 , Communicable Diseases , Communicable Diseases/epidemiology , Humans , International Cooperation , Pandemics , SARS-CoV-2
7.
Global Security : Health, Science and Policy ; 6(1):18-25, 2021.
Article in English | ProQuest Central | ID: covidwho-1559167

ABSTRACT

The costs of responding and mitigating the COVID-19 pandemic is a critical example of the need for continual investment for global health security (GHS) preparedness in today’s inter-connected world as exemplified earlier with Ebola, Zika, and H1N1. Microbial diversity including endemic and emerging infectious diseases unique to Latin America are well known. When combined with geopolitical, socioeconomic, and environmental factors, especially climate change and human migration, which are expanding the range of disease vectors and pathogens, the risk for infectious disease outbreaks greatly increases. Enhancing GHS requires a greater awareness and cooperation within the region as well as more effective infectious disease surveillance systems. Frameworks such as the International Health Regulations and Global Health Security Agenda underpin policies to strengthen health systems. Greater international cooperation aimed to effectively enhance infectious disease surveillance are pivotal to increasing trust among partner countries and strengthen health security systems and best practices to respond and mitigate infectious disease outbreaks. Here we discuss infectious disease threats and risks associated with the current socioeconomic and political climate that influence GHS in order to demonstrate the need for further investment.

8.
Front Public Health ; 9: 659695, 2021.
Article in English | MEDLINE | ID: covidwho-1441153

ABSTRACT

The current COVID-19 pandemic demonstrates the need for urgent and on-demand solutions to provide diagnostics, treatment and preventative measures for infectious disease outbreaks. Once solutions are developed, meeting capacities depends on the ability to mitigate technical, logistical and production issues. While it is difficult to predict the next outbreak, augmenting investments in preparedness, such as infectious disease surveillance, is far more effective than mustering last-minute response funds. Bringing research outputs into practice sooner rather than later is part of an agile approach to pivot and deliver solutions. Cooperative multi- country research programs, especially those funded by global biosecurity programs, develop capacity that can be applied to infectious disease surveillance and research that enhances detection, identification, and response to emerging and re-emerging pathogens with epidemic or pandemic potential. Moreover, these programs enhance trust building among partners, which is essential because setting expectation and commitment are required for successful research and training. Measuring research outputs, evaluating outcomes and justifying continual investments are essential but not straightforward. Lessons learned include those related to reducing biological threats and maturing capabilities for national laboratory diagnostics strategy and related health systems. Challenges, such as growing networks, promoting scientific transparency, data and material sharing, sustaining funds and developing research strategies remain to be fully resolved. Here, experiences from several programs highlight successful partnerships that provide ways forward to address the next outbreak.


Subject(s)
COVID-19 , Communicable Diseases , Communicable Diseases/diagnosis , Disease Outbreaks/prevention & control , Humans , Pandemics , SARS-CoV-2
9.
Methods ; 195: 77-91, 2021 11.
Article in English | MEDLINE | ID: covidwho-1142316

ABSTRACT

The current COVID-19 pandemic contains an unprecedented amount of uncertainty and variability and thus, there is a critical need for understanding of the variation documented in the biological, policy, sociological, and infrastructure responses during an epidemic to support decisions at all levels. With the significant asymptomatic spread of the virus and without an immediate vaccine and pharmaceuticals available, the best feasible strategies for testing and diagnostics, contact tracing, and quarantine need to be optimized. With potentially high false negative test results, infected people would not be enrolled in contact-trace programs and thus, may not be quarantined. Similarly, without broad testing, asymptomatic people are not identified and quarantined. Interconnected system dynamics models can be used to optimize strategies for mitigations for decision support during a pandemic. We use a systems dynamics epidemiology model along with other interconnected system models within public health including hospitals, intensive care units, masks, contact tracing, social distancing, and a newly developed testing and diagnostics model to investigate the uncertainties with testing and to optimize strategies for detecting and diagnosing infected people. Using an orthogonal array Latin Hypercube experimental design, we ran 54 simulations each for two scenarios of 10% and 30% asymptomatic people, varying important inputs for testing and social distancing. Systems dynamics modeling, coupled with computer experimental design and statistical analysis can provide rapid and quantitative results for decision support. Our results show that widespread testing, contacting tracing and quarantine can curtail the pandemic through identifying asymptomatic people in the population.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Contact Tracing/methods , Models, Biological , Systems Analysis , Uncertainty , COVID-19/prevention & control , Humans , Physical Distancing , Quarantine/methods
SELECTION OF CITATIONS
SEARCH DETAIL